Course and Examination Fact Sheet: Autumn Semester 2021

7,354: Data Analytics and Causal Inference

ECTS credits: 6

Overview examination/s
(binding regulations see below)
Decentral - examination paper written at home (in groups - all given the same grades) (50%)
Examination time: term time
Central - Written examination (50%, 90 mins.)
Examination time: inter-term break

Attached courses
Timetable -- Language -- Lecturer
7,354,1.00 Data Analytics and Causal Inference -- Englisch -- Preinerstorfer David
7,354,2.01 Data Analytics and Causal Inference: Exercises, Group 1 -- Englisch -- Preinerstorfer David
7,354,2.02 Data Analytics and Causal Inference: Exercises, Group 2 -- Englisch -- Preinerstorfer David

Course information

Course prerequisites

Students with no prior knowledge or experience in the methodology of empirical research in the social sciences may be required to familiarize themselves with some basic empirical methods. This can be done by studying relevant textbooks, such as Imai, Kosuke (2018) *Quantitative Social Science: An Introduction*. Princeton University Press. Note that the book covers topics beyond those discussed in this course. Refer to the course outline for the content of this course.

To hone their programming skills for data analysis, students are encouraged to attend the MIA mornings workshops 7,364 'Programming in R'; 7,366 'Data Handling and Manipulation' and 7,368 'Effective Data Visualization'.

Learning objectives

The course aims at imparting a basic understanding and intuition of quantitative research methods. The goal is to provide students of International Affairs with the foundation necessary to analyze data in their own research and to become critical consumers of statistical claims made in the news media, in policy reports, and in academic research. The following learning objectives should be attained after successful completion of both the lecture and the associated group meetings:

- Students have a strong working knowledge and the skills to identify and apply adequate methods in tackling problems in International Affairs.
- Students identify appropriate evidence and evaluate critically existing social science scholarship at an advanced level.
- Students systematically appraise theoretical and applied knowledge and understanding of quantitative research techniques.
- Students assess diverse theoretical and methodological approaches and perspectives as they frame and evaluate evidence in a systematic and critical manner.
- Students demonstrate proficiency in assessing the adequacy of statistical and causal inference methods to answer relevant research and policy questions in social sciences.

Course content

Substantive questions in empirical scientific and policy research are often causal. Does voter outreach increase turnout? Are job training programs effective? Can a universal health insurance program improve people's health? This course introduces students to both statistical theory and practice of causal inference, with a focus on applications in International Politics, Economics, Law, and Business Strategy.
The course puts special emphasis on an intuitive understanding of the relevant concepts, rather than the formal definitions and technicalities, which are kept to a necessary minimum. It has an applied focus: Students learn what methods can help them to answer particular research questions in their field, they learn how to make sense out of data, and to interpret and to critically assess existing data analyses. Examples adopting the different analysis methods and causal identification strategies are discussed to illustrate how the methods are used in practice.

In this course we use the open-source statistical software R (http://www.r-project.org). To help make using R easier, we’ll be using RStudio (http://www.rstudio.com/), a user interface that simplifies many common operations.

The specific topics treated in this course are:

1. **Data analytics** (working with R, graphics, summary statistics, plots, implementation of statistical methods and model diagnostics)
2. **Elementary notions of probability and statistics** (random variables, expectation, variance, covariance, correlation, estimation, testing, confidence intervals, regression).
3. **Causal inference** (correlation vs. causation, experimental/observational data, potential outcome framework, counterfactuals, controls, matching, propensity scores, instrumental variables, difference-in-differences, regression discontinuity)

Course structure and indications of the learning and teaching design

The course consists of two components: (i) weekly lectures, in which the topics outlined in the section "course content" above are introduced, explained, illustrated, and discussed, and (ii) weekly exercise sessions, in which students present and discuss their solutions to weekly problem sets and further discussion on the content of the lecture part takes place. Participation in the exercise sessions should reflect solid preparation (students should have done the required readings for the week's topic, thought about the material, and done their best to understand it).

For the effective completion of the course, it is necessary to attend both the lecture sessions and the exercise group meetings.

Course literature

The course is based on the following textbooks (which also include topics not covered in the course):

Additional course information

In the case of the President's Board having to implement new directives due to the SARS-CoV-2 pandemic in AS2021, the course information listed above will be changed as follows:

- The course (lectures + exercise sessions) is conducted online via the platform MS Teams.
- The recordings of the course will not be saved.
- The lecturer informs via StudyNet on the changed implementation modalities of the course.
- There are no changes necessary to the course information.
- There are no changes necessary regarding the central written exam or the paper written at home.
Examination information

Examination sub part/s

1. Examination sub part (1/2)

Examination time and form
Decentral - examination paper written at home (in groups - all given the same grades) (50%)
Examination time: term time

Remark
Weekly problem sets, solved potentially in groups.

Examination-aid rule
Term papers

Written work must be written without outside help according to the known citation standards, and a declaration of authorship must be attached, which is available as a template on the StudentWeb.

Documentation (quotations, bibliography, etc.) must be carried out universally and consistently according to the requirements of the chosen/specified citation standard such as e.g. APA or MLA.

The legal standard is recommended for legal work (cf. by way of example: FORSTMOSER, P., OGORÉK R., SCHINDLER B., Juristisches Arbeiten: Eine Anleitung für Studierende (the latest edition in each case), or according to the recommendations of the Law School).

The reference sources of information (paraphrases, quotations, etc.) that has been taken over literally or in the sense of the original text must be integrated into the text in accordance with the requirements of the citation standard used. Informative and bibliographical notes must be included as footnotes (recommendations and standards e.g. in METZGER, C., Lern- und Arbeitsstrategien (latest edition)).

For all written work at the University of St. Gallen, the indication of page numbers is mandatory, regardless of the standard chosen. Where page numbers are missing in sources, the precise designation must be made differently: chapter or section title, section number, article, etc.

Supplementary aids
--

Examination languages
Question language: English
Answer language: English

2. Examination sub part (2/2)

Examination time and form
Central - Written examination (50%, 90 mins.)
Examination time: inter-term break

Remark
Sit-in exam (90 min.)

Examination-aid rule
Extended Closed Book

The use of aids is limited; any additional aids permitted are exhaustively listed under "Supplementary aids". Basically, the following is applicable:

- At such examinations, all the pocket calculators of the Texas Instruments TI-30 series and mono- or bilingual dictionaries (no subject-specific dictionaries) without hand-written notes are admissible. Any other pocket calculator models and any electronic dictionaries are inadmissible.
- In addition, any type of communication, as well as any electronic devices that can be programmed and are capable of...
communication such as notebooks, tablets, mobile telephones and others, are inadmissible.

- Students are themselves responsible for the procurement of examination aids.

Supplementary aids

Examination languages

Question language: English
Answer language: English

Examination content

Students are expected to make the following contributions:

- Problem sets (50%). There will be weekly problem sets. These problem sets provide an opportunity for students to conduct data analyses and to work on problems the solution of which will deepen their understanding of the concepts introduced in the lectures. In these weekly exercise classes, students give short presentations of their solutions to the problems, the quality of which serves as the basis of their evaluation in this part of the course.

- Central exam (50%). The exam assesses the understanding of the concepts introduced in this course (data analytics, elementary notions of probability and statistics, causal inference) and the ability to correctly interpret and criticize research results. Students should be able to interpret R code and output.

- The specific topics are:
 1. Data analytics (working with R, graphics, summary statistics, plots, implementation of statistical methods and model diagnostics)
 2. Elementary notions of probability and statistics (random variables, expectation, variance, covariance, correlation, estimation, testing, confidence intervals, regression).
 3. Causal inference (correlation vs. causation, experimental/observational data, potential outcome framework, counterfactuals, controls, matching, propensity scores, instrumental variables, difference-in-differences, regression discontinuity)

Examination relevant literature

Materials covered in the exam are provided through Canvas. All basic readings will be made available prior to the lectures. All exam relevant parts will be made available online prior to the last lecture.
Please note

Please note that only this fact sheet and the examination schedule published at the time of bidding are binding and takes precedence over other information, such as information on StudyNet (Canvas), on lecturers' websites and information in lectures etc.

Any references and links to third-party content within the fact sheet are only of a supplementary, informative nature and lie outside the area of responsibility of the University of St.Gallen.

Documents and materials are only relevant for central examinations if they are available by the end of the lecture period (CW51) at the latest. In the case of centrally organised mid-term examinations, the documents and materials up to CW 42 are relevant for testing.

Binding nature of the fact sheets:

- Course information as well as examination date (organised centrally/decentrally) and form of examination: from bidding start in CW 34 (Thursday, 26 August 2021);
- Examination information (regulations on aids, examination contents, examination literature) for decentralised examinations: in CW 42 (Monday, 18 October 2021);
- Examination information (regulations on aids, examination contents, examination literature) for centrally organised mid-term examinations: in CW 42 (Monday, 18 October 2021);

Examination information (regulations on aids, examination contents, examination literature) for centrally organised examinations: two weeks before the end of the registration period in CW 45 (Monday, 8 November 2021).