Course and Examination Fact Sheet: Autumn Semester 2017

7,305: Statistics

ECTS credits: 4

Overview examination/s
(binding regulations see below)
Decentral - Oral examination (individual) (100%, 20 mins.)

Attached courses
Timetable -- Language -- Lecturer
7,305,1.00 Statistics -- Englisch -- Audrino Francesco

Course information

Course prerequisites
Bachelor level knowledge of Mathematics, Statistics, and Econometrics

Course content

Introductory course in Probability and Statistics for Master students.

The course will emphasize topics needed in the further study of economics, finance, and econometrics and will provide the needed quantitative preparation for the understanding and analysis of the different economic and financial applications taught in the later terms.

Course objective:
Students will learn how to deal with stochastic environments and will be able to work properly under conditions where uncertainty plays a major role. Moreover, students will identify and estimate key quantities (parameters) that drive the distributions of the relevant random variables under investigation

Course structure

1. Main probability distributions employed in statistical modeling: the discrete case
 - Discrete probability functions and distribution functions
 - Special discrete distributions
 - Relations among certain discrete distributions
 - Expectation and other moments
 - Multivariate discrete distributions
 - Moment generating function
2. Main probability distributions employed in statistical modeling: the continuous case
 - Probability density function and cumulative distribution function
 - Special continuous distributions
 - Expectation and other moments
 - Multivariate continuous distributions
 - Moment generating function
 - Distribution of functions of continuous random variables
 - Estimation of distribution functions and probability density functions: the empiric distribution function

3. Point estimation
 - The point estimation problem
 - The method of least squares
 - Maximum likelihood estimation
 - The method of moments

4. Confidence sets and tests of hypothesis
 - Excursus: The Central Limit Theorem
 - Confidence interval
 - Confidence set and its construction
 - Test of hypothesis

5. The likelihood-ratio test and alternative 'large-sample' equivalents of it
 - Testing normal means and normal variances
 - The likelihood-ratio test
 - The chi-squared test

Course literature

Mandatory literature:
- Lecture Notes

Recommended literature:

Additional course information
--
Examination information

Examination sub part/s

1. Examination sub part (1/1)

Examination time and form
Decentral - Oral examination (individual) (100%, 20 mins.)

Remark
--

Examination-aid rule
Extended Closed Book
The use of aids is limited; any additional aids permitted are exhaustively listed under “Supplementary aids”. Basically, the following is applicable:

- At such examinations, all the pocket calculators of the Texas Instruments TI-30 series and mono- or bilingual dictionaries (no subject-specific dictionaries) without hand-written notes are admissible. Any other pocket calculator models and any electronic dictionaries are inadmissible.
- In addition, any type of communication, as well as any electronic devices that can be programmed and are capable of communication such as notebooks, tablets, PDAs, mobile telephones and others, are inadmissible.
- Students are themselves responsible for the procurement of examination aids.

Supplementary aids
None

Examination languages
Question language: English
Answer language: English

Examination content

1. Main probability distributions employed in statistical modeling: the discrete case
 - Discrete probability functions and distribution functions
 - Special discrete distributions
 - Relations among certain discrete distributions
 - Expectation and other moments
 - Multivariate discrete distributions
 - Moment generating function

2. Main probability distributions employed in statistical modeling: the continuous case
 - Probability density function and cumulative distribution function
 - Special continuous distributions
 - Expectation and other moments
 - Multivariate continuous distributions
 - Moment generating function
 - Distribution of functions of continuous random variables
 - Estimation of distribution functions and probability density functions: the empiric distribution function

3. Point estimation
 - The point estimation problem
 - The method of least squares
Maximum likelihood estimation
 - The method of moments

4. Confidence sets and tests of hypothesis
 - Excursus: The Central Limit Theorem
 - Confidence interval
 - Confidence set and its construction
 - Test of hypothesis

5. The likelihood-ratio test and alternative "large-sample" equivalents of it
 - Testing normal means and normal variances
 - The likelihood-ratio test
 - The chi-squared test

Examination relevant literature
 - Lecture Notes (available on Studynet at the beginning of the term)

Please note
We would like to point out to you that this fact sheet has absolute priority over other information such as StudyNet, faculty members' personal databases, information provided in lectures, etc.

When will the fact sheets become binding?
 - Information about courses and examination time (central/decentral and grading form): from the start of the bidding process on 24 August 2017
 - Information about decentral examinations (examination-aid rule, examination content, examination relevant literature): after the 4th semester week on 16 October 2017
 - Information about central examinations (examination-aid rule, examination content, examination relevant literature): from the start of the enrolment period for the examinations on 06 November 2017

Please look at the fact sheet once more after these deadlines have expired.